International Psychotherapy Institute

Interpretation and Working Through
In an Adolescent Analysis

March 28, 2021
Anabella de Brostella, PhD and Caroline Sehon, MD
Adolescence

- “The hour of the stranger” [D. H. Lawrence]
- Extended period of mourning
- Working through inner biological changes
- Psychic restructuring amid social & cultural pressures
- Turbulent and longstanding crisis
- “The age of experimentation”
Adolescence

- “What has been silenced in childhood usually manifests itself loudly in adolescence” [Kancyper, 2007]
- The unconscious is active generating manifestations in all stages of life
 - Can reorder situations
 - The adolescent questions the parents
 - A questioning stage to create something new
 - A window of opportunity
Adolescent challenges

- Transitioning from infantile to adult psychic structures
- Reorganization of identity & sexual self
- “Unsettling” of latency period & “settling” into adult life
 [Meltzer, 1973]
- Reactivation of aggressive & sexual impulses
- Restructuring of entire personality
Adolescent states of mind

- Heightened anxiety & disruptive states of mind
- Predominance of projection mechanisms
- Aim to protect mind by avoiding internal conflict
 - Evacuating anxiety, “acting out,” denial
 - Pseudo-maturity
 - Egs. Bullying, substance use, gangs
- Containment: Therapy, Parent work
Vignette

- 16 y.o. boy in 1x-weekly therapy with Anabella
- Limited verbal communication with lots of affect
- Tended to use play materials like a younger child
- Arrived to the video session as a monkey/shark
- Scene wearing shorts without a t-shirt, & in bed
- Opportunity for setting frame & containment
Environmental’s Influence on Development

- Parent-child Relationship = most N.B. Factor
- “Relationships are the ‘active ingredients’
- Developmental Approach is essential
- Self-regulation is basic
- Therapeutic alliance determines outcome

Core Concepts of Concurrent Parent Work

- Optimizes effectiveness of adolescent therapy
- Dual goals of all child/adolescent tx
 1. Restores adolescent’s developmental path
 2. Strengthens relationship with parent
- Full range of interventions
- Continue regularly throughout treatment
- Adolescent tx & parent work are mutually enhancing

Neurobiological development

- Cortical gray matter decreases as subcortical white matter reorganizes
- remodeling of neural connections, synaptic pruning
- Quantum leaps in reasoning and flexibility
“Heart over mind” mentality

- Mismatch of subcortical & cortical development
- Fosters desire to explore and experiment (+ve)
- Poorer decision-making and impulse control (-ve)
Neuroimaging of brain development

parts of the STG, posterior parietal cortex, and prefrontal cortex, are high-order association areas, which are also most recent evolutionarily (38, 39). Our observation of these areas appearing to mature later may suggest that the cortical development follows the evolutionary sequence to some degree.

The exact process underlying the GM loss is unknown. Cerebral white matter increases in the first four decades because of axonal myelination (40) and may partially explain the observed GM loss (41, 42). Although changes in sulcal and gyral folding patterns or other nonatrophic processes such as dehydration could influence the GM density, the primary cause for loss of GM density is unknown. We speculate that it may be driven at least partially by the process of synaptic pruning (43) together with trophic glial and vascular changes and cell shrinkage (44). Thus, region-specific differences in GM maturation may result from the underlying heterochronous synaptic pruning in the cortex, as has been shown in the primate and human cerebral cortical development (18, 45–48). Interestingly, in the frontal cortex, the dorsolateral prefrontal cortex matures last, coinciding with its later myelination, demonstrating that pruning myelination may often occur in parallel.

These findings may have clinical implications. For example, autism, with onset before the age of 3 years, shows global cerebral GM hyperplasia in the first 2 years of life (49) and larger frontal and temporal GM volumes by 4 years, followed by a slower rate of growth in these regions by 7 years (50, 51). Childhood-onset schizophrenia, with a mean age of onset around the age of 10 years, is associated with a striking parietal GM loss, which progresses anteriorly during adolescence in a back-to-front fashion (52), whereas adult-onset schizophrenia (the more typical form) is more strongly associated with deficits in later-maturing temporal and frontal regions (53–55) and is associated with selective abnormalities of the heteromodal regions (29).

Thus, alterations either in degree or timing of basic maturational pattern may at least partially be underlying these neurodevelopmental disorders.

The magnitude of the changes in some cortical regions is highly significant and consistent with the growth and loss rates observed in our prior longitudinal studies. In an earlier report (28), we developed an approach using tensor mapping to measure the local growth rates and tissue-loss rates at a local level in the anatomy of the caudate and corpus callosum. In very small regions of these structures, local growth rates exceeded 40% per year, and local tissue-loss rates reached 40% per year in small regions of the basal ganglia. Because of the increased spatial resolution, peak local rates of change obtained from anatomical mapping approaches are often greater than those obtained in volumetric studies of anatomically parcellated brain structures. Assessment of lobar volumes, for example, can average growth or tissue-loss rates over a large structure, and the peak rates of volumetric change are reduced correspondingly. The cellular substrate for these cortical changes may be a combination of myelination, dendritic pruning, and changes in the neuronal, glial, vascular, and neurite packing density in different cortical laminae. There also may be changes in the relaxometric properties of the MRI signal, which is based on underlying water content. The myelination component can result in very large net percent changes in cortical volumes over periods of several years, especially when the volumes assessed are relatively small.

Early Adolescence

- Extends from 11 (or 12) yo to 14 yo
- Approximates to middle school years
- Physical body transforms very quickly
- Onset and speed of pubertal changes impacts self-experience viz-a-viz peers
Early Adolescence

- Self-representation evolves as the body transforms
- Focus shifts from family onto complex peer group
- Reliance upon the peer group for guidance
- Emergence of risky behaviors
Defensive functioning

- Massive cognitive development
- Psychic structure is malleable
- Prone to labile states of mind
- Self-fragmentation
- Heavy reliance upon immature defenses
Mid-Adolescence

- Extends from 14 yo to 17 yo
- Approximates to high school years
- Ends when teenagers anticipate autonomous self
- Bodily changes pose serious challenge to mental life
Mid-Adolescence

- Growing autonomy → conflicts with parents
- Risky behaviors continue to increase
- Work on gender role identity, masturbation fantasy
- Interpersonal sexual contacts emerge
Defensive functioning

- Process of growing integration of the self
- Formal operational thinking matures
- Greater capacities for self-regulation
- More able to rely upon more mature defenses
- Employ more on internal supports
Late Adolescence (17-21)

- Extends from 17 yo to 21 yo
- End of high school and the post-high school experiences
- Intrapsychic phase in which identity, personality, and superego is consolidated
- Advancing individuation
- Shifts in power differential in parent-child relationship
Late Adolescence

- Development and integration of personal identity
- Integration of childhood trauma & self-continuity
- Distinguishing love and sex
- Maturing of moral functioning
Defensive functioning

- Ongoing integration of self
- Advanced thinking capacities & executive functioning
- More mature self-regulation & defenses
- Greater control of feelings and actions
Analytic attitude & method

- Receptivity, reverie, listening, observation
- Tolerance of the unknown
- Attends to the unconscious (Ucs) to Ucs communication
- Gathers Ucs fantasies and examines defenses
- Distinguishes between manifest and latent content
Interpretation & Working Through

- Make links between associations
- Gives form to the words of the patient
- Thinks on behalf of the patient and lends thinking to the patient to build the adolescent mind
- Focus on the transference link as crucial to working through
REFERENCES

- Brady, M. (2018) “Thinking under fire” (Chapter 6) and “Parent work in adolescent analysis: An application of Bion’s group theory” (Chapter 7). In *Analytic Engagements with Adolescents: Sex, Gender, and Subversion* (pp103-139) London: Routledge.